W - Algebras Related to Parafermion Algebras

نویسنده

  • HIROMICHI YAMADA
چکیده

We study a W -algebra of central charge 2(k − 1)/(k + 2), k = 2, 3, . . . contained in the commutant of a Heisenberg algebra in a simple affine vertex operator algebra L(k, 0) of type A (1) 1 with level k. We calculate the operator product expansions of the W -algebra. We also calculate some singular vectors in the case k ≤ 6 and determine the irreducible modules and Zhu’s algebra. Furthermore, the rationality and the C2cofiniteness are verified for such k.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized vertex algebras generated by parafermion-like vertex operators

It is proved that for a vector space W , any set of parafermion-like vertex operators on W in a certain canonical way generates a generalized vertex algebra in the sense of [DL2] with W as a natural module. This result generalizes a result of [Li2]. As an application, generalized vertex algebras are constructed from Lepowsky-Wilson’s Z-algebras of any nonzero level.

متن کامل

The Structure of Parafermion Vertex Operator Algebras

It is proved that the parafermion vertex operator algebra associated to the irreducible highest weight module for the affine Kac-Moody algebra A (1) 1 of level k coincides with a certain W -algebra. In particular, a set of generators for the parafermion vertex operator algebra is determined.

متن کامل

Weighted Convolution Measure Algebras Characterized by Convolution Algebras

The weighted semigroup algebra Mb (S, w) is studied via its identification with Mb (S) together with a weighted algebra product *w so that (Mb (S, w), *) is isometrically isomorphic to (Mb (S), *w). This identification enables us to study the relation between regularity and amenability of Mb (S, w) and Mb (S), and improve some old results from discrete to general case.

متن کامل

The structure of parafermion vertex operator algebras: general case

The structure of the parafermion vertex operator algebra associated to an integrable highest weight module for any affine Kac-Moody algebra is studied. In particular, a set of generators for this algebra has been determined.

متن کامل

Solvable Lie algebras with $N(R_n,m,r)$ nilradical

In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008